
Review of C - Pointers & Arrays
Prepared by Vibha Masti

References

"The C Programming Language. 2nd Edition", Brian Kernighan and Dennis Ritchie
Geeks for Geeeks

Acknowledgement

Dr. Shylaja Sharath

Pointers
A pointer is a variable that stores the address of another variable
In C, the unary operator & is used to find the address of a variable

A pointer is defined using the * operator

To dereference a pointer (i.e., access the object that the pointer is pointing to), the unary
dereferencing operator * is used

example variable 25 1000

1004
1008

example pointer 1000 100C

1010

1014

1018

points to

3004 1080

1000 25

pointer variable

The declaration below indicates that the expression *ip is an int

Pointer types

Pointers are constrained to point to variables of a particular type (the exception being void pointers)

For instance, if the pointer ip points to an integer a , then the expression *ip can legally occur

wherever the expression a occurs

An int pointer cannot point to a variable of type float , or any other type (compiler generates a

warning and it is a dangerous practice)

Safe practice: initialise all declared pointers to NULL

Pointers as Arguments

Pointers can be passed as function arguments
C passes function arguments only by value, so passing pointers enables functions to alter values of
variables in the calling function

/* An int variable */

int example_variable = 25;

	
/* Pointer to the variable */

int *example_pointer = &example_variable;

	
/* Dereferencing the pointer - modifies the original variable */

*example_pointer = 35;

int *ip;

int age = 25;

int *ip = &age;

	
printf("In ten years, you will be %d years old.\n", age + 10);

	
printf("In twenty years, you will be %d years old.\n", *ip + 20);

int *ip = NULL; // safe

int *ip; // not safe

Example program: swapping

Pointers and Arrays
An array is a collection of items of the same type stored at contiguous memory locations
Any element in the array is accessed by offsetting from the array's base address
Arrays in C are zero-indexed

Any operation that can be achieved with array subscripting can be achieved with pointers
The name of the array is the pointer to the first element of the array (base address)

The same applies to character arrays and pointers

void swap(int *px, int *py) {

 /* Swaps values of *px and *py */

 int temp = *px;

 *px = *py;

 *py = temp;

}

	
int main() {

 int x = 20, y = 30;

 /* Before: x = 20, y = 30 */

 swap(&x, &y);

 /* After: x = 30, y = 20 */

 return 0;

}

/* Declare an array of size 5 */

int *a[5];

	
/* Indexing arrays - access 3rd element */

printf("%d\n", a[2]);

	
/* Using pointers - access 3rd element */

printf("%d\n", *(a + 2))

Pointer Arrays (Pointers to Pointers)
A common use case for an array of pointers is an array of character strings
Sorting an array of character strings invoves just rearranging the pointers in the array, and not copying
the strings themselves into new memory locations

Methods to define an array of strings

Method 1

Method 2

char *a = "Hello World!";

	
char b[] = "Hello World!";

// An array of size 4 with elements of type char*

char *names[4] = {"James", "Betty", "Eliza", "Bella"};

	
// Print all names

for (int i = 0; i < 4; ++i) {

 printf("%s\n", names[i]);

}

// An array of size implicitly defined with elements of type char*

char *names[] = {"James", "Betty", "Eliza", "Bella"};

	
// Print all names

for (int i = 0; i < 4; ++i) {

 printf("%s\n", names[i]);

}

Method 3

Not allowed - generates a segmentation fault

Can individually assign to indices after allocating memory

Double Pointers

A double pointer is a pointer to a pointer
Dereferencing a double pointer once returns a single pointer

// A two-dimentional array with number of columns = 5

char names[][5] = {"James", "Betty", "Eliza", "Bella"};

	
// Print all names

for (int i = 0; i < 4; ++i) {

 printf("%s\n", names[i]);

}

// No memory allocated for all the strings

char **names = {"James", "Betty", "Eliza", "Bella"};

	
for (int i = 0; i < 4; ++i) {

 printf("%s\n", names[i]);

}

char **names = NULL;

	
names = (char **) malloc(5*4*sizeof(char));

	
names[0] = "James";

names[1] = "Betty";

names[2] = "Eliza";

names[3] = "Bella";

	
for (int i = 0; i < 4; ++i) {

 printf("%s\n", names[i]);

}

int a = 25; /* variable */

	
int *ip = &a; /* pointer*/

Pointer to array vs Array of Pointers

A pointer to an array is a pointer than stores the address containing the first element of the array, but
it is not of type int *

A pointer to an array points to the whole array and not just the first element
Incrementing a pointer to an array increments it by the size of the array and not by the size of an int

An array of pointers is an array containing pointers as its elements

	
int **dp = &ip; /* double pointer */

	
/* Dereferencing the double pointer once */

if (ip == *dp) {

 print("This is true\n");

}

	
/* Dereferencing the double pointer twice */

if (a == **dp) {

 print("This is true\n");

}

	
/* Dereferencing the pointer once */

if (a == *ip) {

 print("This is true\n");

}

/*Array of 5 integers */

int arr[5] = {1, 2, 3, 4, 5};

	
/* Pointer to an array of 5 integers */

int (*parr)[5] = arr;

	
/* Pointer to the first element of the array */

int *p = arr;

/* Array of 10 integer pointers */

int *p[10];

Multi-dimensional Arrays and Pointers

A multi-dimensional array can be declared in C as shown below

Must specify number of columns

Accessing the ith row and jth column of a multi-dimensional array can be done using indexing or
pointers

/* 5x5 matrix */

int m[5][5] = {

 {1, 2, 6, 4, 5},

 {2, 2, 3, 1, 4},

 {3, 6, 2, 2, 6},

 {4, 7, 9, 4, 1},

 {5, 8, 0, 2, 3}

};

	
/* 5x5 matrix (implicit number of rows) */

int m[][5] = {

 {1, 2, 6, 4, 5},

 {2, 2, 3, 1, 4},

 {3, 6, 2, 2, 6},

 {4, 7, 9, 4, 1},

 {5, 8, 0, 2, 3}

};

/* Not allowed - must specify number of columns */

int m[][] = {

 {1, 2, 6, 4, 5},

 {2, 2, 3, 1, 4},

 {3, 6, 2, 2, 6},

 {4, 7, 9, 4, 1},

 {5, 8, 0, 2, 3}

};

/* Indexing */

int x = m[i][j];

	
/* Pointers */

int y = *(*(m + i) + j)

	Review of C - Pointers & Arrays
	Pointers
	Pointer types
	Pointers as Arguments

	Pointers and Arrays
	Pointer Arrays (Pointers to Pointers)
	Methods to define an array of strings
	Double Pointers
	Pointer to array vs Array of Pointers

	Multi-dimensional Arrays and Pointers
	

